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Quantum corrections to classical mechanics can be formulated by a new method called quantum-dressed
classical mechanics. The method is based on a time-dependent discrete variable representation (DVR) of the
wave function. The grid points are defined by the Hermite part of a basis set, the-G#rssite basis set.

The formulation introduces a set of grid points which follow the classical trajectory in space. With enough
trajectories (DVR points), the method approaches the exact quantum formulation. With just a single grid
point in each dimension, we recover classical mechanics. The method is, in the present paper, used to treat
the dynamics of molecule surface interaction.

1. Introduction time-consuming part of the calculation. The reason for this is
that the dynamics of the molecule are coupled to excitation
processes in the solid through a mean field potential, involving
a summation over all of the surface atoms and phonon modes
in the solid.

Certain ingrediences of the method are similar to wave packet
propagatiort: its extension to GH expansiofs/ the multicon-
figuration time-dependent Hartree (MCTDH) approdatis-
tributed approximating functions (DAR)prdinary DVRZC or
time-dependent DVR schem&sBut, we think that the way
these are combined so as to have classical mechanics as the
limit of one grid point gives a very compact, flexible, and
egeneral approach to molecular dynamics. An approach which

Quantum corrections to classical mechanics are probably the
most fruitful avenue for pursuing the molecular dynamics of
large systems. We have recently formulated a new approach to
guantum molecular dynamics in which corrections to classical
mechanics are easy to introduce. In this manner, we can exploit
guantum corrections to ordinary classical trajectory calculations.
In our previous applications, the theory has been used for all
degrees of freedom in question, i.e., for one degree of freedom
(DOF) in a tunneling and a double well problémin two
dimensions for collinear inelastic and reactive scattetingd
in three or four dimensions for an inelastic scattering prollem.
In the present paper, we use the theory to study molecule surfac .
scattering, treating the six degrees of freedom of the molecule could eventually replace both the full classical or full quantum
by the new approach, whereas the influence of the surface jsireatment.
incorporated by an effective potential in which surface inelastic ~ Various fragments of method have been presented previously,
events as phonon excitation are taken into account. The time-and the present paper therefore only briefly gives the main
dependent discrete variable representation (DVR) scheme isingrediences of the method and formulates it for the problem
formally developed by expanding the wave function in a Gauss ©f molecule surface scattering, treating the six degrees of
Hermite (GH) basis set and then switching to a DVR repre- freedom of the molecule by the new approach. The surface
sentation in the solution of the equations for the amplitudes of Phonon coupling is included through an effective potential used
the GH basis functiondn this manner, the kinetic operators  in previous work. Finally some numerical calculations on the
of the time-dependent Schiiager equation (TDSE) he hydrogen-copper system are discussed.
already worked on the basis functions and generated classical
mechanical equations of motion before the DVR representation 2. Theory
is introduced The DVR scheme operates with quantum
amplitudes for a given grid point rather than with amplitudes T illustrate the approach, we consider first a simple one-
for a basis function. Classical mechanics arises naturally as thedimensional case. But, the method can readily be extended to
limit where only one grid point is used for each DOF! The grid any dimension of interest (see section 3). The theory is as
points follow the classical dynamics in time and explore the mentioned based upon an expansion of the wave function in
space around the trajectories, thus allowing for quantum the so-called GH basi§ set, i.e., we have
delocalization, tunneling, and other quantum phenomena. In the
new scheme, the kinetic energy matrix is very simplegnstant Y(xt) = Zan(t) Pa(Xt) 1)
sparse matrixwhich couples the grid point amplitudes within n
a given mode. In coordinates weighted by the mass and the
imaginary part of the width, the kinetic matrix is universal, i.e., wherey(xt) are the GH basis functions
independent of the system. All system dependence then appears
in the potential couphng matrix, wh_lch is even S|mpler. itis, as P, (xt) = Y4 exp((/R)[y () + pt) (x — x(©)] +
in all DVR schemes, diagonal. This is especially important in )
the present case, where the evaluation of the potential is the ReA(t) [x — x(®]°) ¢n(&:1) (2)

T Part of the special issue “Aron Kuppermann Festschrift”. where
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o (&N = ;Hn(é) ex;{— %52) 3) Vg = %{ V(X)|y=x T quantum corrections (14)
n
Vni2"x
. . . 2
andy(t) determined by normalizatiop(t) = —A In(2 Im A(t)/ Vi = a V(X)ly_ + quantum corrections  (15)
mh)/4. Hy(X) is a Hermite polynomium and X

We notice that only in the classical limit the effective forces
take the usual form of being a derivative of a potential. Because
We see that the basis set is centered around a trajexf)ryy  the solution of the problem is independent of the effective
and the “ground stateh = 0 is an ordinary Gaussian wave potential (only the convergence pattern in the number of basis
packet (GWP). The GH basis set has been used previously byfunctions is affected)? the simplest scheme is obtained by
several groups,but the context in which it was used and propagating the trajectory by using the forces known from
developed further in refs 5 and 6 is different from those of earlier classical mechanics, i.e., the “leading” terms in eqs 14 and 15.
applications. We think that the development given in this and Thus, we notice that if the potential happens to be of second
previous papers on the DVR representation constitute the order the expansion coefficients are not coupled. This is in

E=+21ImA®M)/MA[X — x(1)] 4)

simplest possible application of this basis set.

The basis set contains, aside from the trajeck@)y the width
parametelA(t) and a momentum parametg(t). The basis set
is orthonormal, i.e.

S AP X Pt = Oy (®)

if the following relation is used for Imy(t):
Imy(t)=— g In(2 Im A(t)/nh) (6)

This connection between Ipnand ImA is compatible with the

equations of motion (10 and 11) given below. We now insert

the expansion (1) in the TDSE:

2wy = — 2w VR IR ()
at - % Mg | '

This gives after some manipulatidsthe following set of
equations:

X(0) = p(ym (®)

(D) = Vi ©)

Aty =— 2 a0y - vy, (10)
2

() = % — iR Im A®)/m (11)

where V., and '/,Vi, are symbolic expressions ferp(t) and

—A(t) — 2 A(t)¥m respectively. For the expansion coefficients

an(t), we obtain the following set of equations:
i ay(t) = ankak(t) + a,()(Egn + (2n + 1A Im A(t)/m)
(12)
whereEin = p(t)%2m and

Woie = [n|V(X) — VIX(1) — Ver(x — X(1)) —
(L/2)Veig(x = x(©)*1 0 (13)

i.e., the expansion coefficients are coupled by matrix elements

over a potentialV which is the actual potentiai(x) from which

is subtracted the not-yet-defined effective potential expanded

to third order around the trajector(t). The effective forces

Vi and Vg have previously been derived by using the Dirac

Frenkel variational theore®® Thus, we obtained

agreement with the fact that a GWP is the exact solution to the
TDSE with a quadratic potential. We see that the present
formulation has facilitated the evaluation of the kinetic energy
terms and that the coupling matrix is diagonal in what is left of
it. Coupling between the expansion coefficients occurs through
the potential term&V,, These potential matrix elements can
easily be evaluated if the potential is expanded around the
trajectoryx(t) in a power serie&® But, in general, we need to
use quadrature or Fourier expansion techniques in order to
evaluate the matrix elements. To avoid the computation of
matrix elements, we switch to a DVR representation. We notice
that this is only possible because the basis set is based on
orthorgonal polynomials!

2.1. DVR RepresentationTo obtain the DVR representation,
we introduce the grid points as zero’s of tN#h basis function,
i.e., of ¢n(2). These zero’'s are those of tHéth Hermite
polynomium and we introduce

N

a,(t) = Zci(t) $4(2) (16)

forn=0, ...,N — 1. Here, the index runs over grid pointg;,
andc;(t) is the amplitude for a given grid point.
The DVR functions are defined as

N-1

Pixt) = DX ) ¢,(2) Pa(x1)

n=

(17)
where

D(xt) = 7 ex;{%(y(t) +p(t) [x — X(O)] +
ReA(t) [x — x(O1") (18)

Equation 23 below could also have been obtained from the
TDSE by inserting an expansion of the wave function in the
DVR basis functions. It is however easier to use eq 16 and insert
this expansion in eq 12.

The DVR functions obey the relation

[ dy () vy = A9 (19)

or using eq 5

which defines the normalization consta#gtWe notice that the
zeros of theNth Hermite polynomium are of course fixed, i.e.,
¢n(z) is time-independent. However, in actual space, the grid
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points and their position depend on time through the equation A =0 (28)
X = X(t) + J/A/(2 Im A(t) Z) (21) F| Im A(t)

§= > e(@)@n+ Doy2)(AA)?  (29)
Thus, the grid points ik space are centered around the trajectory m %

X(t) and spread or contract in time with the magnitude of Im
A(t). However, we notice that a fixed-width approach is obtained
by using

A, =H; for i=] (30)

Because theé=(t) matrix contains the dominating elements
Vi = (41m A(t)z)/m (22) we can, by the following splitting

instead of the derivative of the potential. Thus, with this choice d(t + At) =
and ReA(t = 0) = 0, we get ImA(t) = constant. To keep the i i % [
width fierd is )advantaggous in(():ases where the (noF;]Iinear) exp(— %EAt) exr(— ﬁAAt) exp(— %EAt) d (31)
equations of motion foA(t) lead to large values of Im(t).
We have in the present calculations used the fixed-width reduce the Lanczos part to propagating the vector exp[(
approach, and hence if we, fof, use the classical value (the  2h)EA{] d(t) with the numerically smaller matri&. The method
Newton force) the grid points just follow the classical trajectory is accurate to third ord&r and reduces the CPU requirement
in space. by a factor of 2-3 and the number of Lanczos vectors to be
Inserting the above expression in the equations (12) we obtainstored as well. The method has been tested on three- and four-
. dimensional (4D) problem. Because the matriA is “uni-
ihA ¢(t) = H c(t) (23) versal” and, in the fixed-width approach, also constant, further

whereA is a diagonal matrix with elements (see eq 20) and refinements along these lines will certainly be possible.

H. = (Ey, + WX))AO; + 3. Arbitrarily Sized Systems
ij i i ij
A Im A(t) We can in a straightforward manner extend the theory to
—Z¢n(zi) (2n+1) ¢4(3) (24) many dimensiond. Introducing the total number of grid points
m 5 as

Equation 23 can be brought on a more convenient form by a d

similarity transformation, i.e. N=[]N, (32)
. 1=

ihdt) =AY HA Y (25)

whereN; is the number of grid points in dimensionwe have

— AU
whered = A™c. the potential represented at these points as

We notice that in the DVR representation the potential is
diagonal as usual, and the coupling between the grid points L D @
comes about through the last term, which has a very simple v, Xy, X2, Xy, 1) (33)
time dependence (through IA{t)). In the fixed-width approach,

which is also quite general, also IA{t) = constant. This term  Tne effective potentialV is also diagonal in the grid representa-
is what is left of the kinetic energy coupling, but we notice that ion and is obtained by subtracting first- and second-derivative
the kinetic energy operators have already worked on the basisiems evaluated at the trajectoxgt) = xU(t), ..., XO(t). Thus,
functions. Thus, the “kinetic” coupling elements are time- \ye pave

independent and can be evaluated once and for all. The coupling

matrix is furthermore diagonally dominant, which facilitates the Ne gy

d
solution of eq 25 in a time step. Thus, a Lanczos procédure WO, . x9) = v, X (d)) _ —| -
iterates to an accurate solution rapidly. Thus, we Have d d & gx® X0
i 1 d Nk 82
-+
dit+A) =TS exp(— FDAYS'T'd(®M)  (26) x9(t)) — -ZZ o —xB()? (34)
285 3X(k)2 x(t)

whereT is anM x N matrix containing théM recursion vectors,
D a diagonalM x M matrix, andS anM x M matrix which The kinetic energy coupling terms are defined by

diagonalizes the tridiagonal Lanczos matrix with eigenvalues
D. The number of recursions in each time stejpdepends on T(kl?) =

the coupling and the accuracy needed. For the problems studied A Im Ap(t)NP_l

here, 16-15 iterations are needed witkt = 0.1 or 0.2 fs. By |—I 5  (2)(2n + 1) (2)] /A‘(<p) ®
a simple splitting procedure in which the diagonal part of the I=p~ ik m, nZO % 4 A
kinetic matrix is added t®V and the remaining part propagated
by a Lanczos method, we may even reduce the number of
iterations further in each time step. Thus, we have

(39)

for the dimensiorp = 1, ...,d. N, is the number of grid points
ih d(t) = (E(t) + A) d(t) (27) for that mode andk,j are grid points in modp. The grid points
in model are denoted". The kinetic energy term couples grid
whereE;(t) = Wi (t) + Exin(t)di + Hi andA has zeroes inthe  points within a particular coordinate. Thus, the number of
diagonal, i.e. nonzero off-diagonal matrix elements of the matrixis
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d d which may be quantized. The coupling to the solid is modeled
I_I N() N, —d) (36) through an effective potential of the so-called mean-field &/pe,
1= i= however, with a detailed balance correctiéhus, the Hamil-
tonian for the molecule is
Including the elements in the diagonal we have the total number

of nonzero elements as B h_2(3_2 ka 3_2) B h_2(3_2 ks . 3_2) n
0 4 Max?  ay? azd  2maxX ey o7
DY @) ViR ZXY2) + Vel 92X Y ZET) (39
=1 =

whereM andm are the total and reduced mass of the molecule,
This is then the number of multiplications in each Lanczos 'espectively. We have used the Cartesian coordinatgsand
iteration. By either storing the index for the elements in the Zfor the molecule vector and X, Y, andZ for the center-of-
matrix which are nonzero or by careful programming of the Mass position in a coordinate system located at the copper
kinetic coupling matrix, we can reduce the number of operations Surface such thaZ = 0 corresponds to the top layer of the
to n multiplications. The savings of the method lies in the COPPer atoms. The copper crystal is modeled by 130 atoms in

following important points: three layers, and the coupling to the surface phonons is included
(1) The operation is a simple sparse matrix multiplication, through the time and temperature dependence of the effective
which would vectorize easily on a vector machine. potentialVesr. The surface temperature was taken to be 300 K.

The potential surface is constructed by fitting the parameters
of an embedded diatomics in molecules model (EDIM) to
density functional data. The smallest barrier height is about 40
kJ/mol, and the potential allows by its construction for coupling
to the surface phonons. Although 6D calculations with mixed
basis set and grid methods have appeététithey have been
carried out on a surface excluding the phonon coupling.

For a derivation of the EDIM representation of the molecule
surface interaction and effective time and surface temperature-
dependent potential, the reader is referred to previous Work.
Our main concern here is to use the new time-dependent DVR
approach on the molecule degrees of freedom. We have
performed both 4D and 6D quantum calculations. In the 4D

(2) The number of grid points in dimensions where the
dynamics is local is small because the grid points follow the
dynamical evolution.

(3) No negative absorbing potentials are needed on the grid.

(4) The dynamics with one grid point is meaningful being
the classical limit!

(5) We can add grid points one at a time. Even and odd
numbers are allowed.

(6) We can tailor the grid to the dynamical problem.

(7) The method is extremely easy to implement.

Thus, the method provides an easy way of treating some
degrees of freedom quantally while still exploring the classical

dynamics of others. This is convenient for large systems where, quantum calculations, the number of gridpoints in ¥hand Y

for instance, the motion of atoms or molecules in solution or 4o ginates is just one, i.e., classical mechanics is assumed here.

cluster_s conveniently are modeled_ by traditional molecular In the 6D quantum calculations:Z gridpoints in these degrees
dynamics methods. If a given DOF is treated “classically” we ¢ freedom are included.

have just a single grid point in that mode, i.&,= 1. Hence, In the 4D case, the initial wave function is taken as

this mode appears in the dynamical equations only through the

classical equations of motion for the trajectory and the effect 1

of the classical value in the potentil. WY2Zte) = 191 Yim(0.6) PonplZt)  (39)
We notice that the method is extremely simple to program.

We need the classical equations of motion eventually togetherwherer is the bond distance, and¢ are the orientation of the

with the equations for the widtA(t) for each DOF. A set of diatomic moleculegy(r) is a Morse wave functionYjn is a

grid points for each DOF and the dimension of the coupling spherical harmonics, aridewp is a GWP

matrix is a product of the number of grid points for those DOFs

treated quantally. Because the only thing which needs evaluation 1/4 i

in each(ztlime step is the potential at each grid point, the amount([2 Im A(to))/ ) eX‘{EPZ(tO)[Z — 2] —

of storage needed is minimal. When using Lanczos propagating 1 5

scheme for solving the equations ft(t) we usually store the ﬁ'm ALt)[Z — Z(t)]"| (40)

M recursion vectors, i.e., the storage requirement is Mexn

N. At the expense of extra CPU, we may calculate the recursion which has a momentum distributitn

vectors twice in each time-step or store the recursion vectors

on disk. In either case, the storage requirement in fast memory cky) = V2IA exp(2[Ak — k)]?) (41)

is reduced to just three recursion vectors, i.e., a totalMf 3

This means that we can handle six-dimensional (6D) quantumwhereA = Y,[A/(Im Ax(to))] Y2 H2k2/2M = E — E,;, andhk?/

calculations on a PC computer with modest memory. However, o\ — Eo = P(to)2/2M. ’ r

for large systems, the real advantage of the method comes about |, 6 4150 thexX andY coordinates are intialized as GWPs

if a large part of the system can be treated with just one or two with wid’th parameters Infy(to) = Im Ay(to) and ReAx(to) =

grid points. In any case, the formulation offers a straightforward ReAv(to) = ReAs(t;) = 0. The initial wave function is projected

way of testing whether a classical mechanical description of a | {ha grid basis using that

given DOF is adequate.
X=rsin6 cos¢ (42)

4. An Example

=rsin@ sin 43
We consider as an example the scattering of a hydrogen y ¢ (43)

molecule from a solid. The molecule has six degrees of freedom, Z=r cosf (44)
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TABLE 1: Representation of the Initial Vibrational —Rotational Statesn,j,m = 0,0,0 and 1,10,0 for Various Choices of the
Width Im Ax(t)) = Im Ay(tg) = Im ALtg) and Grid Points ns = ns = ng?

n,j,m=0,0,0 nj,m=1,10,0
Ny Im Ax(to) = 0.16 ImAx(to) = 0.20 ImA(to)) = 0.25 ImA(to)) = 0.30 ImA(t)) = 0.25
10 0.946 1.075 0.951 0.856 0.754
12 1.039 0.988 1.017 0.964 0.880
14 1.004 1.003 0.992 1.021 1.012
16 1.012 0.987 1.006 0.996 0.963
18 0.986 1.007 0.999 0.999 0.919
20 0.995 0.999 1.001 1.000 0.936
21 0.998 1.000 1.002 0.998 1.022
2 The width is in units of amu/ wherer = 1074 s,
TABLE 2: Energy- and State-Resolved Probabilities for TABLE 3: Average Probabilities for Rotational —Vibrational
Inelastic Scattering of Hydrogen from a Copper Surface Excitation as a Function of a DVR Basis Seét
Obtained by Propagating a Single Wavepacket with a DVR e
Grid (1,1,n3,20,20,20) basish',j 0,0 0,2 0,4 1,(0,2,4)
l 1,1,3,21,21,21 0.675 0.286 0.020 0.0011
energy 8 (00) (02 ©4 (06 (10 Pu 1,1521,21,21 0633 0304  0.039 0.0014
90 kJ/mol 15 041 046 0.040 0.0 0.0005 0.075 1,1,7,21,21,21 0.604 0.327 0.045 0.0014
16 043 047 0047 00 00003 0040 443515121 0679 0280  0.022 0.0011
17 043 047 0.053 0.0 0.001 0.051
1,1,5,21,21,21 0.625 0.311 0.040 0.0013
100 kJ/mol 15 0.25 0.32 0.033 0.0 0.0008 0.40 117212121 0.606 0.317 0.053 0.0015
16 025 032 0.034 0.0 0.0008 0.40 e ’ ' ’ '

17 026 031 0.033 0.0 0.0007 0.40 ap. — - L : P
110 kJ/mol 15 0053 0081 0073 00 0.0018 0.79 Ewn = 0.30¢, and the initial vibrationatrotational state i,

0,0. The numbers are averaged over 10 trajectories with random “aiming
i? 88;% 88;8 8833 88 88813 82; point” (X(to), Y(to)). Numbers in the upper part of the table include the
120kJmol 15 0001 0015 0075 0001 0002 090 Phononcoupling. =100 ky/mol.
16 0.005 0.022 0.076 0.001 0.003 0.89
17 0.010 0.027 0.078 0.001 0.004 0.88 for grid points having the bond distancdarger than a critical

valuer*, i.e.
aThe kinetic energ¥ is 100 kJ/mol, and the classical trajectory of

the molecule approaches the surface perpendicular at a random site in Ny

the unit cell. The projection on the final molecular states and total P — d |2 h(r — r*) (45)
energies is carried out using the expression given in the Appendix. diss Z P p

The initial vibrationat-rotational state isr(j) = (0,0). The sticking P=

probability is defined a¥sicc= 1 = 3 Pay- whereh(x) is a Heaviside function being unity for positive and

zero for negative arguments. The valuerpfs obtained as

In this manner, the initial values of thé amplitudes are > 2. >

obtained. The number of grid points in tkey, and zcoordinates =X Ty T3 (46)
was taken as 21, giving a good representation of the initial
vibrational-rotational state of the hydrogen molecule (see Table
1). The average probabilities for inelastic scattering are obtained
by projection of the wave function in the grid representation

on vibrationat-rotational states after the molecule has been Table 3 shows average probabilities obtained usingum-
scattered from the surface, without energy resolving the initial | - Ay = Im Az = 2 amuz~* and one grid point in th& and

translational wave packet. However, because the initial wave Y coordinates. Thus, these are described by classical mechanics.

packet in the translational motion is a GWP it has a width also 11,4 aiming point, i.e.X(t;) and Y(to), at the surface is chosen
in momentum space, making it possible to get energy-resolved an4omly, and an average over 10 trajectories is given. To

probabilities out of the calculation by projection on outgoing  jyestigate the sensitivity to the number of grid point&jmwe
plane waves in the coordinate (see the expression in the naye ysed the same 10 trajectories in each run. The table shows
Appendix). We have in Table 2 shown the result of calculations 5 modest influence of the phonon coupling, but the phonon
with enough grid points in th& coordinates for projection on  ¢oypling has nevertheless been included in all of the calculations
arange of total energies. The table shows thatlibgrid points  except those in the lower half of Table 3. At higher impact
are sufficient for energy- and state-resolved probabilities. The energies our previous calculations have shown that the influence
numbers for sticking obtained with the present surface are of this coupling increase?.

smaller at low energies and probably too large at higher energies  To resolve the rotationalvibrational state of the scattered
as compared with those of the experimental datfsote that hydrogen molecule we need as demonstrated in ref 3 about 20
the sticking probability is defined as a sum of the dissociation grid points in each coordinate y, andz. Energy resolution in

and the adsorption probability. The latter process is important the Z-translational motion requires more than the 3 grid

but only present in calculations including the phonon coupling.  points included in these calculations. We have therefore reported
Below we determine the dissociation probability. It turns out the “average” probabilities rather than the energy resolved (see
to be somewhat smaller than the sticking probability. This is in the Appendix).

agreement with our previous findings using classical mechanics At 50 kJ/mol, we have a possibility for overcoming the barrier
for the motion of the molecule. If we are interested in the for sticking leading to dissociation or trapping at the surface
average reaction probability we simply sum over the amplitudes because of coupling to the substrate excitations, a process which

wherei, j, andl run over the grid points in the three coordinates.
The critical distance for bond breaking is as in previous
calculations taken as* = 2.5 A. The sticking probability
includes also the adsorption process, i.@iekP= Pdiss T Pads
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TABLE 4: Average Probabilities for Rotational —Vibrational
Excitation of H, Colliding with a Cu(100) Surface as a
Function of a DVR Basis Set

J. Phys. Chem. A, Vol. 105, No. 11, 2004345

TABLE 5: Average Dissociation Probability over a Unit
Cell at Exin = 1.0 € as a Function of a DVR Basis Set

number of
basish',j’ 0,0 0,2 0,4 0,6 1,(0,2,4,6)Padgst Puiss basis DVR points Puiss
2,2,3,21,21,21 0.411 0.171 0.118 0.046 0.016 0.226 7,7,5,13,13,13 538265 0.128
2,2,5,21,21,21 0.429 0.164 0.106 0.041 0.017 0.229 7,7,5,14,14,14 672280 0.154
aEin = 0.50¢ and the initial vibrationatrotational state is 0,0.€1 gggﬁﬁﬁ 12;?%2(5) g:ZLgtl_)

= 100 kJ/mol.

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02
0

74

Figure 1. Initial value of the grid probabilitie$d;|? evaluated at the
grid points in a 9x 9 grid over the top site of a copper atom. The
initial wave function in theX andY coordinates is a product of two
Gaussians.

T T T T T T T T

Figure 2. The site-specific reactivity, i.e., probability for dissociation,
at site K,Y) for a hydrogen molecule with kinetic energy 100 kJ/mol
colliding with a Cu(001) surface. The initial state of the molecule is

we shall denote adsorption. Therefore, the probabilities for (nj) = (0,0). A (9,9,5,14,14,14) time-dependent DVR grid was used.
projection on the hydrogen molecular states do not add up to
unity, as is the case at 30 kJ/mol kinetic energy (see Table 4).

The number forP,gs + Pyiss is in reasonable agreement with

that of about 0.3 obtained in ref 21 using classical trajectories.

We can investigate the surface reactivity by reporting the
value of P,(X)Y) evaluated at the grid points in théandY
coordinates. Thus, we define

Zis,i4,i5,i6h(r - I'*) |d{ik}|2

P(X,Yi) = > (47)
Zis,i4,i5,i6|d{ik}|
Figure 1 shows the initial probability distribution, i.e.
PO(XiliYiz) = Z |d{ik}|2 (48)

i3lal5i6

at the DVR grid points irX andY placed on the top site of the
lattice. The initial wave function in these coordinates is taken
as a product of two GWPs

q)GWP(X’tO) (I)GWP(Y’tO)

with Im Ax(tg) = Im Ay(to) = 0.20 amu1, X(to) = Y(to) = O,
and Px(to) = Py(tg) = 0.

With this initial wave function we obtain average reaction
probabilities at the kinetic energy 100 kJ/mol. As mentioned
above, it is possible to get energy resolution by projecting on
the appropriate asymptotic wave functions, which in 6D would
be products of diffraction channel and plane wave functions in
theX, Y, andZ coordinates (see the Appendix). This projection

(49)

exceeds*, and hence, the site specific reactivity can be obtained
from the expressioft.

Four propagations with basis sets ranging from 538 265 to
1111 320 DVR grid points, respectively, were performed. The
average dissociation probability over the unit cell is shown in
Table 5. The initial kinetic energy &, = 100 kJ/mol, the initial
rotationat-vibrational state is (0,0), and incident angles for the
classical trajectory propagating the basis setig)(= (0,0).
Table 5 shows that the numbers obtained with the two largest
basis sets are in good agreement, and hence, the site-specific
reaction probability can be estimated with sufficient accuracy
using about 19grid points. As far as we know, this is the first
time that site specificity in the dissociative sticking has been
calculated quantum mechanicafly.

Figure 2 shows that the probability distribution over the unit
cell has a large amplitude for reaction when we get away from
the center of the copper atoms located ¥ = (0,0),
(1.805,1.805), £1.805,1.805), etc.

5. Conclusion

We have shown that it is possible to formulate a quantum-
dynamical theory in which the grid points follow the classical
dynamics of the system. The new approach to quantum
molecular dynamics has been used for up to 6D quantum
calculations. These calculations have all been carried out on a
PC computer.

In this method, we have to integrate Hamilton equations of
motion as in ordinary trajectory programs, but in addition, we

is possible if the number of gridpoints is increased to about 15 have a set of equations for the quantum amplitudiés The
for each dimension. Such calculations are certainly possible number of grid points influences the size of the time-dependent

within the present framework and will be reported in future
work.

Figure 1 gives the initial probability distribution of the wave
function in a region from about-1 to +1 A in the X andY

equations for thed vector. A classical treatment of the DOF
amounts to using only a single grid point. In each time step,
we have to evaluate the potential. Because the potential coupling
W is diagonal, this process scales ldsthe number of grid

coordinates. From the scattered wave function, we calculate thepoints. However, the kinetic energy term on the other hand
same distribution with the constraint that the bond distance requires no evaluation. It is a constant matrix. Thus, the
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numerical effort in the present problem, where the evaluation which gives

of the time-dependent coupling matrix is the time-consuming

part, scales about linearly with the number of grid points. K |cnjm(k)|2

Another aspect is that absorbing potentials are not needed. Paim(K) :k_oTko) (51)
Conventional methods usually reserve a large portion of the

grid to the wave packet absorption process. For some applica-WhereC(ko) is the weight of the componeks in the initial wave
tions, we furthermore only need the potential in the environment packet and

of the classical trajectories. For the present problem, we have

previously, by using a conventional grid method, found that K22 h2k02

about 128-256 grid points in th&Z coordinates and 64 or 128 —+E,=—=—+E, (52)
in the r bond coordinate together with say-86 in the
diffraction coordinates and about 32 grid points for the two
rotational angles of the diatomic molecule were necessary. This
would amount to about £6-10'° grid points. We have therefore

connects the initial rotationalibrational energyEn;, and
kinetic energy to the final. The amplitu@gm(K) is obtained as

only been able to carry out 4D quantum calculations with 1 AK2

conventional method8.By introducing symmetry-adapted basis Com(K) = —=—(IM A{Im A/ Im A,Im AZ)_”4 Z_
sets, Kroes et al. were able to reduce the matrix size to about \/Z 4 0
1-5 x 107192526 Because we in the present method get the di

main reduction by using fewer points #handr (about 20) we

1 i
——exp(ik2)—g,(r) Yi,(60,0) exp — =
could by combining state expansion techniques with the time- xp(-i )r 9n(1) Yim(0.9) XF{ﬁ[PX(X1
dependent DVR method reduce this number by about 1 order 4/ Ai(l) Aj(z) Aff') A,(4)

of magnitude. This is important in calculations including phonon x(1)) &+ p (O — V(1) + p.(t)(z — 2(t)) +
coupling, which even with the method used Hére about 2 O+ R0 =% ))i PG~ 20)
or_ders of magnitude more time-consuming _tha_m calculations P,()(Z, — Z(t)]} exp —[Re A (X — x(t))2 +
without phonons. Also electrerhole-pair excitation may be h

added to the surface inelastic procesdes)d also this is within

the possibility of the time-dependent DVR method. If coupling ~ ReA(Y; — ¥(1))* + Re Az, — (1))’ + ReA,(Z, — Z(1)’]
to the surface excitations is included, the time dependence of

the interaction potential makes the calculation of the potential (53)
the CPU-determining factor, and hence, it is important that this
part is linear in the number of grid points.

The method may however be combined with conventional, 1 1
i.e., state expansion, techniques for some degrees or operator (Zﬂ—)s/zeXpﬂ(kXX T Y+ k21 9:(1) Yim(0.9) - (54)
algebraic method¥.72° The number of grid points in a given
DOF can be changed according to what property one is follows a similar expression with a summation over a 6D grid
interested in. If for instance state-resolved but only average and with an additional factor
probabilities for inelastic scattering are of interest, we can used )
one grid point in the coordinates for the center of mass motion n ~1/4
(X,Y,2) but need a relative dense grid in the molecule coordi- 2(Im Acim Ay) (55)
nates. If energy resolution in the energy of the perpendicular . . .
motion is needed, we can prepare a wave packet inZthe and obvious extensions of the expression above.
coordinate, and therefore, more grid points in this DOF are
required. If we wish to calculate sticking or reaction probabilities
and are not interested in state resolution, we can decrease the (1) Addhhli(kari, S.; Eilling, (ﬁ D.J. Chem. Phy200Q 113, 1409. Billing,
number of grid points inxy,Z) space to about 1314 in each G D.; Adhikari, S.Chem. Phys. Let200Q 321, 197.
dimension. F_urthermore, we notice _that becaus_e the g_rid pointsQuéﬁt)ug'@%n%umeftie%r}%bebTi{z%nged for publicationint. J.
follow the trajectory we can let classical mechanics decide upon ~ (3) Billing, G. D. Chem. Physlin press.
quantities as branching ratios and project the gridpoints on the  (4) Heller, E. JJ. Chem. Physl976 63, 64. Lee, S.-Y.; Heller, E. J.
channel defined by the trajectory. This possibility is important iégggrg.%q);sl%z 76, 3035. Huber, D.; Heller, E. . Chem. Phys
if the wave function bifurcates. Thus, we do not have to follow (5) Billing, G. D. J. Chem. Phys1997, 107, 4286.
the total delocalization at all times but can split the wave (6) Billing, G. D. J. Chem. Phys1999 111, 48.

i i i i (7) See, for instance, Coalson, R. D.; Karplus, Ghem. Phys. Lett.
function according to the classical dynamics of the system. 1982 90, 301, Meyer. H.-DChem. Phys1981, 61. 335. Kay, K. G Phys.
) ) ) Rev. A 1992 46, 1213.
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