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Quantum corrections to classical mechanics can be formulated by a new method called quantum-dressed
classical mechanics. The method is based on a time-dependent discrete variable representation (DVR) of the
wave function. The grid points are defined by the Hermite part of a basis set, the Gauss-Hermite basis set.
The formulation introduces a set of grid points which follow the classical trajectory in space. With enough
trajectories (DVR points), the method approaches the exact quantum formulation. With just a single grid
point in each dimension, we recover classical mechanics. The method is, in the present paper, used to treat
the dynamics of molecule surface interaction.

1. Introduction

Quantum corrections to classical mechanics are probably the
most fruitful avenue for pursuing the molecular dynamics of
large systems. We have recently formulated a new approach to
quantum molecular dynamics in which corrections to classical
mechanics are easy to introduce. In this manner, we can exploit
quantum corrections to ordinary classical trajectory calculations.
In our previous applications, the theory has been used for all
degrees of freedom in question, i.e., for one degree of freedom
(DOF) in a tunneling and a double well problem,1 in two
dimensions for collinear inelastic and reactive scattering,2 and
in three or four dimensions for an inelastic scattering problem.3

In the present paper, we use the theory to study molecule surface
scattering, treating the six degrees of freedom of the molecule
by the new approach, whereas the influence of the surface is
incorporated by an effective potential in which surface inelastic
events as phonon excitation are taken into account. The time-
dependent discrete variable representation (DVR) scheme is
formally developed by expanding the wave function in a Gauss-
Hermite (GH) basis set and then switching to a DVR repre-
sentation in the solution of the equations for the amplitudes of
the GH basis functions.In this manner, the kinetic operators
of the time-dependent Schro¨dinger equation (TDSE) haVe
already worked on the basis functions and generated classical
mechanical equations of motion before the DVR representation
is introduced. The DVR scheme operates with quantum
amplitudes for a given grid point rather than with amplitudes
for a basis function. Classical mechanics arises naturally as the
limit where only one grid point is used for each DOF! The grid
points follow the classical dynamics in time and explore the
space around the trajectories, thus allowing for quantum
delocalization, tunneling, and other quantum phenomena. In the
new scheme, the kinetic energy matrix is very simple (a constant
sparse matrix) which couples the grid point amplitudes within
a given mode. In coordinates weighted by the mass and the
imaginary part of the width, the kinetic matrix is universal, i.e.,
independent of the system. All system dependence then appears
in the potential coupling matrix, which is even simpler: it is, as
in all DVR schemes, diagonal. This is especially important in
the present case, where the evaluation of the potential is the

time-consuming part of the calculation. The reason for this is
that the dynamics of the molecule are coupled to excitation
processes in the solid through a mean field potential, involving
a summation over all of the surface atoms and phonon modes
in the solid.

Certain ingrediences of the method are similar to wave packet
propagation:4 its extension to GH expansions,5-7 the multicon-
figuration time-dependent Hartree (MCTDH) approach,8 dis-
tributed approximating functions (DAF),9 ordinary DVR,10 or
time-dependent DVR schemes.11 But, we think that the way
these are combined so as to have classical mechanics as the
limit of one grid point gives a very compact, flexible, and
general approach to molecular dynamics. An approach which
could eventually replace both the full classical or full quantum
treatment.

Various fragments of method have been presented previously,
and the present paper therefore only briefly gives the main
ingrediences of the method and formulates it for the problem
of molecule surface scattering, treating the six degrees of
freedom of the molecule by the new approach. The surface
phonon coupling is included through an effective potential used
in previous work. Finally some numerical calculations on the
hydrogen-copper system are discussed.

2. Theory

To illustrate the approach, we consider first a simple one-
dimensional case. But, the method can readily be extended to
any dimension of interest (see section 3). The theory is as
mentioned based upon an expansion of the wave function in
the so-called GH basis5,6 set, i.e., we have

whereψn(x,t) are the GH basis functions

where† Part of the special issue “Aron Kuppermann Festschrift”.

Ψ(x,t) ) ∑
n

an(t) ψn(x,t) (1)

ψn(x,t) ) π1/4 exp((i/p)[γ(t) + p(t) (x - x(t))] +

ReA(t) [x - x(t)]2) φn(ê,t) (2)
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andγ(t) determined by normalizationγ(t) ) -p ln(2 Im A(t)/
πp)/4. Hn(x) is a Hermite polynomium and

We see that the basis set is centered around a trajectoryx(t),
and the “ground state”n ) 0 is an ordinary Gaussian wave
packet (GWP). The GH basis set has been used previously by
several groups,7 but the context in which it was used and
developed further in refs 5 and 6 is different from those of earlier
applications. We think that the development given in this and
previous papers on the DVR representation constitute the
simplest possible application of this basis set.

The basis set contains, aside from the trajectoryx(t), the width
parameterA(t) and a momentum parameterp(t). The basis set
is orthonormal, i.e.

if the following relation is used for Imγ(t):

This connection between Imγ and ImA is compatible with the
equations of motion (10 and 11) given below. We now insert
the expansion (1) in the TDSE:

This gives after some manipulations5,6 the following set of
equations:

whereV′eff and 1/2V′′eff are symbolic expressions for-p̆(t) and
-Ȧ(t) - 2 A(t)2/m respectively. For the expansion coefficients
an(t), we obtain the following set of equations:

whereEkin ) p(t)2/2m and

i.e., the expansion coefficients are coupled by matrix elements
over a potentialWwhich is the actual potentialV(x) from which
is subtracted the not-yet-defined effective potential expanded
to third order around the trajectoryx(t). The effective forces
V′eff andV′′eff have previously been derived by using the Dirac-
Frenkel variational theorem.5,6 Thus, we obtained6

We notice that only in the classical limit the effective forces
take the usual form of being a derivative of a potential. Because
the solution of the problem is independent of the effective
potential (only the convergence pattern in the number of basis
functions is affected),12 the simplest scheme is obtained by
propagating the trajectory by using the forces known from
classical mechanics, i.e., the “leading” terms in eqs 14 and 15.
Thus, we notice that if the potential happens to be of second
order the expansion coefficients are not coupled. This is in
agreement with the fact that a GWP is the exact solution to the
TDSE with a quadratic potential. We see that the present
formulation has facilitated the evaluation of the kinetic energy
terms and that the coupling matrix is diagonal in what is left of
it. Coupling between the expansion coefficients occurs through
the potential termsWnm. These potential matrix elements can
easily be evaluated if the potential is expanded around the
trajectoryx(t) in a power series.5,6 But, in general, we need to
use quadrature or Fourier expansion techniques in order to
evaluate the matrix elements. To avoid the computation of
matrix elements, we switch to a DVR representation. We notice
that this is only possible because the basis set is based on
orthorgonal polynomials!

2.1. DVR Representation.To obtain the DVR representation,
we introduce the grid points as zero’s of theNth basis function,
i.e., of φN(z). These zero’s are those of theNth Hermite
polynomium and we introduce

for n ) 0, ...,N - 1. Here, the indexi runs over grid pointszi,
andci(t) is the amplitude for a given grid point.

The DVR functions are defined as

where

Equation 23 below could also have been obtained from the
TDSE by inserting an expansion of the wave function in the
DVR basis functions. It is however easier to use eq 16 and insert
this expansion in eq 12.

The DVR functions obey the relation

or using eq 5

which defines the normalization constantAi. We notice that the
zeros of theNth Hermite polynomium are of course fixed, i.e.,
φn(zi) is time-independent. However, in actual space, the grid

φn(ê,t) ) 1

xn!2nxπ
Hn(ê) exp(- 1

2
ê2) (3)

ê ) x2 Im A(t)/p[x - x(t)] (4)

∫ dx ψn(x,t)* ψm(x,t) ) δnm (5)

Im γ(t) ) - p
4

ln(2 Im A(t)/πp) (6)

ip
∂

∂t
Ψ(x,t) ) - p2

2m
∂

2

∂x2
Ψ(x,t) + V(x) Ψ(x,t) (7)

x̆(t) ) p(t)/m (8)

p̆(t) ) -V′eff (9)

Ȧ(t) ) - 2
m

A(t)2 - 1
2
V′′eff (10)

γ̆(t) )
p(t)2

m
- ip Im A(t)/m (11)

ip ăn(t) ) ∑
k

Wnkak(t) + an(t)(Ekin + (2n + 1)p Im A(t)/m)

(12)

Wnk ) 〈φn|V(x) - V(x(t)) - V′eff(x - x(t)) -

(1/2)V′′eff(x - x(t))2|φk〉 (13)

V′eff ) d
dx

V(x)|x)x(t) + quantum corrections (14)

V′′eff ) d2

dx2
V(x)|x)x(t) + quantum corrections (15)

an(t) ) ∑
i)1

N

ci(t) φn(zi) (16)

ψi(x,t) ) Φ(x,t) ∑
n)0

N-1

φn(zi) φn(x,t) (17)

Φ(x,t) ) π1/4 exp( i
p
(γ(t) + p(t) [x - x(t)] +

ReA(t) [x - x(t)]2) (18)

∫ dx ψ* i(x,t) ψj(x,t) ) Aiδij (19)

∑
n

φn(zi) φn(zj) ) Aiδij (20)
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points and their position depend on time through the equation

Thus, the grid points inx space are centered around the trajectory
x(t) and spread or contract in time with the magnitude of Im
A(t). However, we notice that a fixed-width approach is obtained
by using

instead of the derivative of the potential. Thus, with this choice
and ReA(t ) 0) ) 0, we get ImA(t) ) constant. To keep the
width fixed is advantageous in cases where the (nonlinear)
equations of motion forA(t) lead to large values of ImA(t).
We have in the present calculations used the fixed-width
approach, and hence if we, forV′eff, use the classical value (the
Newton force) the grid points just follow the classical trajectory
in space.

Inserting the above expression in the equations (12) we obtain

whereA is a diagonal matrix with elementsAi (see eq 20) and

Equation 23 can be brought on a more convenient form by a
similarity transformation, i.e.

whered ) A-1/2c.
We notice that in the DVR representation the potential is

diagonal as usual, and the coupling between the grid points
comes about through the last term, which has a very simple
time dependence (through ImA(t)). In the fixed-width approach,
which is also quite general, also ImA(t) ) constant. This term
is what is left of the kinetic energy coupling, but we notice that
the kinetic energy operators have already worked on the basis
functions. Thus, the “kinetic” coupling elements are time-
independent and can be evaluated once and for all. The coupling
matrix is furthermore diagonally dominant, which facilitates the
solution of eq 25 in a time step. Thus, a Lanczos procedure13

iterates to an accurate solution rapidly. Thus, we have14

whereT is anM × N matrix containing theM recursion vectors,
D a diagonalM × M matrix, andS an M × M matrix which
diagonalizes the tridiagonal Lanczos matrix with eigenvalues
D. The number of recursions in each time step∆t depends on
the coupling and the accuracy needed. For the problems studied
here, 10-15 iterations are needed with∆t ) 0.1 or 0.2 fs. By
a simple splitting procedure in which the diagonal part of the
kinetic matrix is added toW and the remaining part propagated
by a Lanczos method, we may even reduce the number of
iterations further in each time step. Thus, we have

whereEii(t) ) Wii(t) + Ekin(t)δii + H̃ii andÃ has zeroes in the
diagonal, i.e.

Because theE(t) matrix contains the dominating elements
we can, by the following splitting

reduce the Lanczos part to propagating the vector exp[(-i/
2p)E∆t] d(t) with the numerically smaller matrixÃ. The method
is accurate to third order15 and reduces the CPU requirement
by a factor of 2-3 and the number of Lanczos vectors to be
stored as well. The method has been tested on three- and four-
dimensional (4D) problems.16 Because the matrixÃ is “uni-
versal” and, in the fixed-width approach, also constant, further
refinements along these lines will certainly be possible.

3. Arbitrarily Sized Systems

We can in a straightforward manner extend the theory to
many dimensionsd. Introducing the total number of grid points
as

whereNi is the number of grid points in dimensioni, we have
the potential represented at these points as

The effective potentialW is also diagonal in the grid representa-
tion and is obtained by subtracting first- and second-derivative
terms evaluated at the trajectoryx(t) ) x(1)(t), ..., x(d)(t). Thus,
we have

The kinetic energy coupling terms are defined by

for the dimensionp ) 1, ...,d. Np is the number of grid points
for that mode andk,j are grid points in modep. The grid points
in model are denotedi(l). The kinetic energy term couples grid
points within a particular coordinate. Thus, the number of
nonzero off-diagonal matrix elements of the matrixH is

xi ) x(t) + xp/(2 Im A(t) zi) (21)

V′′eff ) (4 Im A(t)2)/m (22)

ipA c3 (t) ) H c(t) (23)

Hij ) (Ekin + W(xi))Aiδij +
p Im A(t)

m
∑

n

φn(zi) (2n + 1) φn(zj) (24)

ip d4 (t) ) A-1/2HA-1/2d (25)

d(t + ∆t) ) TS exp(- i
p
D∆t)S+T+d(t) (26)

ip d4 (t) ) (E(t) + Ã) d(t) (27)

Ãii ) 0 (28)

H̃ij )
Im A(t)

m
∑

n

φn(zi)(2n + 1)φn(zj)/(AiAj)
1/2 (29)

Ãij ) H̃ij for i * j (30)

d(t + ∆t) )

exp(- i
2p

E∆t) exp(- i
p
Ã∆t) exp(- i

2p
E∆t) d(t) (31)

N ) ∏
i)1

d

Ni (32)

V(x1
(1), ...,xN1

(1)
,x1

(2), ...,xN2

(2)
, ...) (33)

W(x1
(1), ...,xNd

(d)) ) V(x1
(1), ...,xNd

(d)
) - ∑

k)1

d

∑
i)1

Nk ∂V

∂x(k) |x(t)
(xi

(k) -

x(k)(t)) -
1

2
∑
k)1

d

∑
i)1

Nk ∂
2V

∂x(k)2 |x(t)
(xi

(k) - x(k)(t))2 (34)

Tkj
(p) )

∏l*pδi(l)k(l)

p Im Ap(t)

mp
∑
n)0

Np-1

φn(zk)(2n + 1)φn(zj)/xAk
(p) Aj

(p)

(35)
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Including the elements in the diagonal we have the total number
of nonzero elements as

This is then the number of multiplications in each Lanczos
iteration. By either storing the index for the elements in the
matrix which are nonzero or by careful programming of the
kinetic coupling matrix, we can reduce the number of operations
to n multiplications. The savings of the method lies in the
following important points:

(1) The operation is a simple sparse matrix multiplication,
which would vectorize easily on a vector machine.

(2) The number of grid points in dimensions where the
dynamics is local is small because the grid points follow the
dynamical evolution.

(3) No negative absorbing potentials are needed on the grid.
(4) The dynamics with one grid point is meaningful being

the classical limit!
(5) We can add grid points one at a time. Even and odd

numbers are allowed.
(6) We can tailor the grid to the dynamical problem.
(7) The method is extremely easy to implement.
Thus, the method provides an easy way of treating some

degrees of freedom quantally while still exploring the classical
dynamics of others. This is convenient for large systems where,
for instance, the motion of atoms or molecules in solution or
clusters conveniently are modeled by traditional molecular
dynamics methods. If a given DOF is treated “classically” we
have just a single grid point in that mode, i.e.,Ni ) 1. Hence,
this mode appears in the dynamical equations only through the
classical equations of motion for the trajectory and the effect
of the classical value in the potentialW.

We notice that the method is extremely simple to program.
We need the classical equations of motion eventually together
with the equations for the widthA(t) for each DOF. A set of
grid points for each DOF and the dimension of the coupling
matrix is a product of the number of grid points for those DOFs
treated quantally. Because the only thing which needs evaluation
in each time step is the potential at each grid point, the amount
of storage needed is minimal. When using Lanczos propagating
scheme for solving the equations fordi(t) we usually store the
M recursion vectors, i.e., the storage requirement is thenM ×
N. At the expense of extra CPU, we may calculate the recursion
vectors twice in each time-step or store the recursion vectors
on disk. In either case, the storage requirement in fast memory
is reduced to just three recursion vectors, i.e., a total of 3N.
This means that we can handle six-dimensional (6D) quantum
calculations on a PC computer with modest memory. However,
for large systems, the real advantage of the method comes about
if a large part of the system can be treated with just one or two
grid points. In any case, the formulation offers a straightforward
way of testing whether a classical mechanical description of a
given DOF is adequate.

4. An Example

We consider as an example the scattering of a hydrogen
molecule from a solid. The molecule has six degrees of freedom,

which may be quantized. The coupling to the solid is modeled
through an effective potential of the so-called mean-field type,17

however, with a detailed balance correction.17 Thus, the Hamil-
tonian for the molecule is

whereM andm are the total and reduced mass of the molecule,
respectively. We have used the Cartesian coordinatesx, y, and
z for the molecule vectorr andX, Y, andZ for the center-of-
mass position in a coordinate system located at the copper
surface such thatZ ) 0 corresponds to the top layer of the
copper atoms. The copper crystal is modeled by 130 atoms in
three layers, and the coupling to the surface phonons is included
through the time and temperature dependence of the effective
potentialVeff. The surface temperature was taken to be 300 K.
The potential surface is constructed by fitting the parameters
of an embedded diatomics in molecules model (EDIM) to
density functional data. The smallest barrier height is about 40
kJ/mol, and the potential allows by its construction for coupling
to the surface phonons. Although 6D calculations with mixed
basis set and grid methods have appeared,18,19 they have been
carried out on a surface excluding the phonon coupling.

For a derivation of the EDIM representation of the molecule
surface interaction and effective time and surface temperature-
dependent potential, the reader is referred to previous work.17

Our main concern here is to use the new time-dependent DVR
approach on the molecule degrees of freedom. We have
performed both 4D and 6D quantum calculations. In the 4D
quantum calculations, the number of gridpoints in theX andY
coordinates is just one, i.e., classical mechanics is assumed here.
In the 6D quantum calculations, 2-7 gridpoints in these degrees
of freedom are included.

In the 4D case, the initial wave function is taken as

wherer is the bond distance,θ andφ are the orientation of the
diatomic molecule,gn(r) is a Morse wave function,Yjm is a
spherical harmonics, andΓGWP is a GWP

which has a momentum distribution14

where∆ ) 1/2[p/(Im AZ(t0))]1/2, p2k2/2M ) E - EVj, andp2k0
2/

2M ) E0 ) PZ(t0)2/2M.
In 6D, also theX andY coordinates are intialized as GWPs

with width parameters ImAX(t0) ) Im AY(t0) and ReAX(t0) )
ReAY(t0) ) ReAZ(t0) ) 0. The initial wave function is projected
on the grid basis using that

∏
i)1

d

Ni(∑
i)1

d

Ni - d) (36)

n ) ∏
i)1

d

Ni∑
i)1

d

Ni (37)

- p2

2M( ∂
2

∂X2
+ ∂

2

∂Y2
+ ∂

2

∂Z2) - p2

2m( ∂
2

∂x2
+ ∂

2

∂y2
+ ∂

2

∂z2) +

V0(x,y,z,X,Y,Z) + Veff(x,y,z,X,Y,Z,t,Ts) (38)

Ψ(x,y,z,Z,t0) ) 1
r
gn(r) Yjm(θ,φ) ΦGWP(Z,t0) (39)

([2 Im AZ(t0)]/πp)1/4 exp( i
p
PZ(t0)[Z - Z(t0)] -

1
p
Im AZ(t0)[Z - Z(t0)]

2) (40)

c(k0) ) x2/π∆ exp(-2[∆(k - k0)]
2) (41)

x ) r sin θ cosφ (42)

y ) r sin θ sinφ (43)

z ) r cosθ (44)
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In this manner, the initial values of thedi amplitudes are
obtained. The number of grid points in thex, y, and zcoordinates
was taken as 21, giving a good representation of the initial
vibrational-rotational state of the hydrogen molecule (see Table
1). The average probabilities for inelastic scattering are obtained
by projection of the wave function in the grid representation
on vibrational-rotational states after the molecule has been
scattered from the surface, without energy resolving the initial
translational wave packet. However, because the initial wave
packet in the translational motion is a GWP it has a width also
in momentum space, making it possible to get energy-resolved
probabilities out of the calculation by projection on outgoing
plane waves in theZ coordinate (see the expression in the
Appendix). We have in Table 2 shown the result of calculations
with enough grid points in theZ coordinates for projection on
a range of total energies. The table shows that 15-17 grid points
are sufficient for energy- and state-resolved probabilities. The
numbers for sticking obtained with the present surface are
smaller at low energies and probably too large at higher energies
as compared with those of the experimental data.20 Note that
the sticking probability is defined as a sum of the dissociation
and the adsorption probability. The latter process is important
but only present in calculations including the phonon coupling.21

Below we determine the dissociation probability. It turns out
to be somewhat smaller than the sticking probability. This is in
agreement with our previous findings using classical mechanics
for the motion of the molecule. If we are interested in the
average reaction probability we simply sum over the amplitudes

for grid points having the bond distancer larger than a critical
value r*, i.e.

whereh(x) is a Heaviside function being unity for positive and
zero for negative arguments. The value ofrp is obtained as

wherei, j, andl run over the grid points in the three coordinates.
The critical distance for bond breaking is as in previous
calculations taken asr* ) 2.5 Å. The sticking probability
includes also the adsorption process, i.e., Pstick ) Pdiss + Pads.

Table 3 shows average probabilities obtained using ImAX )
Im AY ) Im AZ ) 2 amuτ-1 and one grid point in theX and
Ycoordinates. Thus, these are described by classical mechanics.
The aiming point, i.e.,X(t0) andY(t0), at the surface is chosen
randomly, and an average over 10 trajectories is given. To
investigate the sensitivity to the number of grid points inZ, we
have used the same 10 trajectories in each run. The table shows
a modest influence of the phonon coupling, but the phonon
coupling has nevertheless been included in all of the calculations
except those in the lower half of Table 3. At higher impact
energies our previous calculations have shown that the influence
of this coupling increases.22

To resolve the rotational-vibrational state of the scattered
hydrogen molecule we need as demonstrated in ref 3 about 20
grid points in each coordinatex, y, andz. Energy resolution in
the Z-translational motion requires more than the 3-7 grid
points included in these calculations. We have therefore reported
the “average” probabilities rather than the energy resolved (see
the Appendix).

At 50 kJ/mol, we have a possibility for overcoming the barrier
for sticking leading to dissociation or trapping at the surface
because of coupling to the substrate excitations, a process which

TABLE 1: Representation of the Initial Vibrational -Rotational Statesn,j,m ) 0,0,0 and 1,10,0 for Various Choices of the
Width Im Ax(t0) ) Im Ay(t0) ) Im Az(t0) and Grid Points n4 ) n5 ) n6

a

n,j,m ) 0,0,0 n,j,m ) 1,10,0

n4 Im Ax(t0) ) 0.16 ImAx(t0) ) 0.20 ImAx(t0) ) 0.25 ImAx(t0) ) 0.30 ImAx(t0) ) 0.25

10 0.946 1.075 0.951 0.856 0.754
12 1.039 0.988 1.017 0.964 0.880
14 1.004 1.003 0.992 1.021 1.012
16 1.012 0.987 1.006 0.996 0.963
18 0.986 1.007 0.999 0.999 0.919
20 0.995 0.999 1.001 1.000 0.936
21 0.998 1.000 1.002 0.998 1.022

a The width is in units of amu/τ, whereτ ) 10-14 s.

TABLE 2: Energy- and State-Resolved Probabilities for
Inelastic Scattering of Hydrogen from a Copper Surface
Obtained by Propagating a Single Wavepacket with a DVR
Grid (1,1,n3,20,20,20)a

energy n3 (0,0) (0,2) (0,4) (0,6) (1,0) Pstick

90 kJ/mol 15 0.41 0.46 0.040 0.0 0.0005 0.075
16 0.43 0.47 0.047 0.0 0.0003 0.040
17 0.43 0.47 0.053 0.0 0.001 0.051

100 kJ/mol 15 0.25 0.32 0.033 0.0 0.0008 0.40
16 0.25 0.32 0.034 0.0 0.0008 0.40
17 0.26 0.31 0.033 0.0 0.0007 0.40

110 kJ/mol 15 0.053 0.081 0.073 0.0 0.0018 0.79
16 0.041 0.073 0.073 0.0 0.0018 0.81
17 0.038 0.070 0.073 0.0 0.0018 0.82

120 kJ/mol 15 0.001 0.015 0.075 0.001 0.002 0.90
16 0.005 0.022 0.076 0.001 0.003 0.89
17 0.010 0.027 0.078 0.001 0.004 0.88

a The kinetic energyE0 is 100 kJ/mol, and the classical trajectory of
the molecule approaches the surface perpendicular at a random site in
the unit cell. The projection on the final molecular states and total
energies is carried out using the expression given in the Appendix.
The initial vibrational-rotational state is (n,j) ) (0,0). The sticking
probability is defined asPstick ) 1 - ∑n′j′Pn′j′.

TABLE 3: Average Probabilities for Rotational -Vibrational
Excitation as a Function of a DVR Basis Seta

basis/n′,j′ 0,0 0,2 0,4 1,(0,2,4)

1,1,3,21,21,21 0.675 0.286 0.020 0.0011
1,1,5,21,21,21 0.633 0.304 0.039 0.0014
1,1,7,21,21,21 0.604 0.327 0.045 0.0014

1,1,3,21,21,21 0.679 0.280 0.022 0.0011
1,1,5,21,21,21 0.625 0.311 0.040 0.0013
1,1,7,21,21,21 0.606 0.317 0.053 0.0015

a Ekin ) 0.30 ε̂, and the initial vibrational-rotational state isn,j )
0,0. The numbers are averaged over 10 trajectories with random “aiming
point” (X(t0),Y(t0)). Numbers in the upper part of the table include the
phonon coupling. 1ε̂ ) 100 kJ/mol.

Pdiss) ∑
p)1

Nd

|dp|2 h(rp - r*) (45)

rp ) xxi
2 + yj

2 + zl
2 (46)
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we shall denote adsorption. Therefore, the probabilities for
projection on the hydrogen molecular states do not add up to
unity, as is the case at 30 kJ/mol kinetic energy (see Table 4).
The number forPads + Pdiss is in reasonable agreement with
that of about 0.3 obtained in ref 21 using classical trajectories.

We can investigate the surface reactivity by reporting the
value of Pr(X,Y) evaluated at the grid points in theX and Y
coordinates. Thus, we define

Figure 1 shows the initial probability distribution, i.e.

at the DVR grid points inX andY placed on the top site of the
lattice. The initial wave function in these coordinates is taken
as a product of two GWPs

with Im AX(t0) ) Im AY(t0) ) 0.20 amuτ-1, X(t0) ) Y(t0) ) 0,
andPX(t0) ) PY(t0) ) 0.

With this initial wave function we obtain average reaction
probabilities at the kinetic energy 100 kJ/mol. As mentioned
above, it is possible to get energy resolution by projecting on
the appropriate asymptotic wave functions, which in 6D would
be products of diffraction channel and plane wave functions in
theX, Y, andZ coordinates (see the Appendix). This projection
is possible if the number of gridpoints is increased to about 15
for each dimension. Such calculations are certainly possible
within the present framework and will be reported in future
work.

Figure 1 gives the initial probability distribution of the wave
function in a region from about-1 to +1 Å in the X and Y
coordinates. From the scattered wave function, we calculate the
same distribution with the constraint that the bond distance

exceedsr*, and hence, the site specific reactivity can be obtained
from the expression.47

Four propagations with basis sets ranging from 538 265 to
1 111 320 DVR grid points, respectively, were performed. The
average dissociation probability over the unit cell is shown in
Table 5. The initial kinetic energy isE0 ) 100 kJ/mol, the initial
rotational-vibrational state is (0,0), and incident angles for the
classical trajectory propagating the basis set is (θ,φ) ) (0,0).
Table 5 shows that the numbers obtained with the two largest
basis sets are in good agreement, and hence, the site-specific
reaction probability can be estimated with sufficient accuracy
using about 106 grid points. As far as we know, this is the first
time that site specificity in the dissociative sticking has been
calculated quantum mechanically.24

Figure 2 shows that the probability distribution over the unit
cell has a large amplitude for reaction when we get away from
the center of the copper atoms located atX,Y ) (0,0),
(1.805,1.805), (-1.805,1.805), etc.

5. Conclusion

We have shown that it is possible to formulate a quantum-
dynamical theory in which the grid points follow the classical
dynamics of the system. The new approach to quantum
molecular dynamics has been used for up to 6D quantum
calculations. These calculations have all been carried out on a
PC computer.

In this method, we have to integrate Hamilton equations of
motion as in ordinary trajectory programs, but in addition, we
have a set of equations for the quantum amplitudesdi(t). The
number of grid points influences the size of the time-dependent
equations for thed vector. A classical treatment of the DOF
amounts to using only a single grid point. In each time step,
we have to evaluate the potential. Because the potential coupling
W is diagonal, this process scales asN, the number of grid
points. However, the kinetic energy term on the other hand
requires no evaluation. It is a constant matrix. Thus, the

TABLE 4: Average Probabilities for Rotational -Vibrational
Excitation of H2 Colliding with a Cu(100) Surface as a
Function of a DVR Basis Seta

basis/n′,j′ 0,0 0,2 0,4 0,6 1,(0,2,4,6)Pads+ Pdiss

2,2,3,21,21,21 0.411 0.171 0.118 0.046 0.016 0.226
2,2,5,21,21,21 0.429 0.164 0.106 0.041 0.017 0.229

a Ekin ) 0.50 ε̂ and the initial vibrational-rotational state is 0,0. 1ε̂
) 100 kJ/mol.

Figure 1. Initial value of the grid probabilities|dij|2 evaluated at the
grid points in a 9× 9 grid over the top site of a copper atom. The
initial wave function in theX and Y coordinates is a product of two
Gaussians.

Pr(Xi1
,Yi2

) )
∑i3,i4,i5,i6

h(r - r*) |d{ik}
|2

∑i3,i4,i5,i6
|d{ik}

|2
(47)

P0(Xi1
,Yi2

) ) ∑
i3,i4,i5,i6

|d{ik}
|2 (48)

ΦGWP(X,t0) ΦGWP(Y,t0) (49)

TABLE 5: Average Dissociation Probability over a Unit
Cell at Ekin ) 1.0 Ê as a Function of a DVR Basis Set

basis
number of

DVR points Pdiss

7,7,5,13,13,13 538265 0.128
7,7,5,14,14,14 672280 0.154
9,9,5,13,13,13 889785 0.201
9,9,5,14,14,14 1111320 0.195

Figure 2. The site-specific reactivity, i.e., probability for dissociation,
at site (X,Y) for a hydrogen molecule with kinetic energy 100 kJ/mol
colliding with a Cu(001) surface. The initial state of the molecule is
(n,j) ) (0,0). A (9,9,5,14,14,14) time-dependent DVR grid was used.
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numerical effort in the present problem, where the evaluation
of the time-dependent coupling matrix is the time-consuming
part, scales about linearly with the number of grid points.
Another aspect is that absorbing potentials are not needed.
Conventional methods usually reserve a large portion of the
grid to the wave packet absorption process. For some applica-
tions, we furthermore only need the potential in the environment
of the classical trajectories. For the present problem, we have
previously, by using a conventional grid method, found that
about 128-256 grid points in theZ coordinates and 64 or 128
in the r bond coordinate together with say 8-16 in the
diffraction coordinates and about 32 grid points for the two
rotational angles of the diatomic molecule were necessary. This
would amount to about 108-1010 grid points. We have therefore
only been able to carry out 4D quantum calculations with
conventional methods.23 By introducing symmetry-adapted basis
sets, Kroes et al. were able to reduce the matrix size to about
1-5 × 107.19,25,26 Because we in the present method get the
main reduction by using fewer points inZ andr (about 20) we
could by combining state expansion techniques with the time-
dependent DVR method reduce this number by about 1 order
of magnitude. This is important in calculations including phonon
coupling, which even with the method used here17 are about 2
orders of magnitude more time-consuming than calculations
without phonons. Also electron-hole-pair excitation may be
added to the surface inelastic processes,21 and also this is within
the possibility of the time-dependent DVR method. If coupling
to the surface excitations is included, the time dependence of
the interaction potential makes the calculation of the potential
the CPU-determining factor, and hence, it is important that this
part is linear in the number of grid points.

The method may however be combined with conventional,
i.e., state expansion, techniques for some degrees or operator
algebraic methods.27-29 The number of grid points in a given
DOF can be changed according to what property one is
interested in. If for instance state-resolved but only average
probabilities for inelastic scattering are of interest, we can used
one grid point in the coordinates for the center of mass motion
(X,Y,Z) but need a relative dense grid in the molecule coordi-
nates. If energy resolution in the energy of the perpendicular
motion is needed, we can prepare a wave packet in theZ
coordinate, and therefore, more grid points in this DOF are
required. If we wish to calculate sticking or reaction probabilities
and are not interested in state resolution, we can decrease the
number of grid points in (x,y,z) space to about 13-14 in each
dimension. Furthermore, we notice that because the grid points
follow the trajectory we can let classical mechanics decide upon
quantities as branching ratios and project the gridpoints on the
channel defined by the trajectory. This possibility is important
if the wave function bifurcates. Thus, we do not have to follow
the total delocalization at all times but can split the wave
function according to the classical dynamics of the system.
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Appendix

The energy-resolved and state-resolved probabilities are in
the 4D case obtained as a projection of the total wave function
on

which gives

wherec(k0) is the weight of the componentk0 in the initial wave
packet and

connects the initial rotational-vibrational energyEn0j0 and
kinetic energy to the final. The amplitudecnjm(k) is obtained as

Projection in six dimensions on

follows a similar expression with a summation over a 6D grid
and with an additional factor

and obvious extensions of the expression above.
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